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Making inferences from dataMaking inferences from data

Data y are generated  by the nonlinear system f o :
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The system f o is unknown, but a finite number of 
noise corrupted measurements of yt,wt are available:

( ) , 1, ,t o t ty f w d t T= + =

dt accounts for errors in data ,t ty w



Making inferences from dataMaking inferences from data

It is desired to make an inference on system f o :
prediction

identification

control, filtering, fault detection

The inference is described by the operator I( f o,wT)

one-step prediction

identification

I(f o,wT)=f o(wT)

I(f o,wT)=f o



Making inferences from dataMaking inferences from data

Problems :
for given estimates

evaluate the inference error

ˆ ˆ,o T T

The inference error cannot be exactly evaluated
since f o and wT are not known

f f w w
ˆ ˆ( , ) ( , )o T TI f w I f w−

find estimates ˆ ˆ,o T Tf f w w
“minimizing” the inference error

Need of prior assumptions on f o and dt for 
deriving finite bounds on inference error



Making inferences from dataMaking inferences from data

Typical assumptions in literature:
on system:   

1

( ) ( , ) ( , )
r

o
i i i

i

f f w w

Functional form of F(θ) required:
derived from physical laws
σI : ‘basis’ function (polynomial, sigmoid,..)
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on noise:    iid stochastic noise

Parameters θ are estimated by minimizing
ML or LS functional, which are not convex wrt θ



Set Membership approachSet Membership approach

Significant improvements obtained by:

use of “local” bound

W : bounded set ∈ Rn
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'( ) : ( ) ,of f C f w w Wγ γ∈ ∈ ≤ ∀ ∈F =

scaling of regressors w to adapt to data

, 1 , . . ,t td t Tε≤ =

SM assumptions:

on system:   

on noise:
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Set Membership approachSet Membership approach

Inference algorithm Φ maps all information
into estimated inference:

( ) : | ( ) | , 1, ,T o t o t tFSS f y f w t Tγ ε⎧ ⎫
∈ − ≤ =⎨ ⎬

⎩ ⎭
= F

All information (prior and data) are summarized
in the Feasible Systems Set:

ˆ ( ) ( , )T o TI FSS I f w=Φ

FSST is the set of all systems ∈F (γ) that could 
have generated the data



Prior assumptions validationPrior assumptions validation

The fact that the priors are validated by using the 
present data does not exclude that they may be
invalidated by future data 
(Popper, “Conjectures and Refutations: the Growth of Scientific 
Knowledge”, 1969)

Prior assumptions are invalidated by data
if FSST is empty

Prior assumptions are considered validated
if FSST ≠ Ø



Prior assumptions validationPrior assumptions validation

Theorem:
Conditions for FSST ≠ Ø are:

necessary:

sufficient:

( ) , 1, ..,t tf w h t T≥ =

( ) , 1, ..,t tf w h t T> =

Define: 21,.., 1
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t T
f w h w wγ

= −
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Prior assumptions validationPrior assumptions validation

Used for the
choice  of γ,ε
values

In space (γ,ε) the surface * ( ) inf
TFSS

γ ε γ
≠∅

=
separates falsified values from validated ones

validated

falsified



Error and optimality conceptsError and optimality concepts

(Local) Identification prediction error:

| |

ˆ( ) [ ( )] sup sup || ( ) ( , ) ||
T T T T

T T T

f FSS w w
E I E FSS FSS I f w

δ∈ − ≤
= Φ = Φ −

An algorithm Φ* is optimal if:

*[ ( )] inf [ ( )]T T TE FSS E FSS r FSS
Φ

Φ = Φ = ∀

r: (local) radius of information

An algorithm Φα is α-optimal if:

[ ( )] inf [ ( )]T T TE FSS E FSS FSSα α
Φ

Φ ≤ Φ ∀



InferenceInference

Let || I(f,wT)||=|| f ||p=

Theorem:

1( ) [ ( ) ( )]
2

cf w f w f w= +

i) The identification algorithm Φc(FSST)=f c

is optimal for any Lp norm, 1≤ p ≤∞

1[ ] ||
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||c
pE f r f f= = −

Define

1/[ | ( ) | d ]p p

W
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ii) The radius of information r is:

Identification: Identification: I(I(f,wf,wTT)=)=ff



Properties of Properties of ff , , ff¯̄ and and f f cc

i) f(w) , f¯ (w) are piece-wise conic
Lipschitz continous functions
with constant γ

ii)  f (w) , (f¯ (w) ) is 
differentiable 

( )w M WM∀ ∈ ⊂

sets
of zer

( ) :
o measure 

coM coM

f¯ (w)



Properties of Properties of ff , , ff¯̄ and and f f cc

are the 
faces of the Hyperbolic
Voronoi Diagrams (HVD)

generated by f , f¯

HVD are generalization of
standard Voronoi Diagrams
Edelsbrunner, “Combinatorial
Geometry”, Springer 1987

HVD generated by f¯

andcoM coM



Properties of Properties of ff , , ff¯̄ and and f f cc

Theorem:
i) The optimal estimate f c(w) is Lipschitz

continous in W with constant γ

ii) f c(w) is differentiable ∀w ∈M ⊂ W and:

M M M= ∪Let

Note: coM has zero measure

2

' ( ) ,cf w w M Wγ≤ ∀ ∈ ⊂



InferenceInference

Let: || I(f,wT)||=| f (wT) |

Assume:

Prediction: Prediction: I(I(f,wf,wTT)=)=f f ((wwTT))

Let: 

Since the HVD generated by f , f¯ give a complete
partition of W in cells then:

t t tw C C∈ ∩
and ,t tC C
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InferenceInference

Theorem:
i) The prediction algorithm 

ii) If

Prediction: Prediction: I(I(f,wf,wTT)=)=ff((wwTT))

( ) ( )c T c TFSS f wΦ =

( ) ,T T TB w C Cδ ⊂ ∩ then prediction 1ˆ ( )T c Ty f w+ =
is optimal and the radius of information is:

is 2-optimal, with prediction error bounded by:
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